

CuSn6

CuSn6 | C51900

CuSn6 is a solid solution strengthened copper alloy (bronze) with 6% tin. The alloy has high strength with adequate conductivity and good spring properties, making it highly suitable for cold forming processes. It is wear-resistant, offers excellent corrosion resistance, and can be easily soldered.

Application areas are pressed products, connectors, spring contacts, springs, metal hoses, the paper industry, ship component manufacturing, as well as electrical and mechanical parts.

Comparable Standarts				
EN	JIS	UNS		
CW452K	C5191	C51900		

Chemical Composition %						
Cu	Zn	Ni	Sn	Fe	Pb	P
rem	max 0.2	0.2 max	5.5-7.0	0.1 max	0.02 max	0.01-0.4

Physical Properties	
Melting Point	[°C]
Density	(g/cm³)
Cp @ 20°C	[k]/kgK]
Thermal Conductivity	(W/mK)
Electrical Conductivity	MS/m
Modules of Elasticity	[GPa]
α @ 20°C	[10-6/K]

Note: The specified conductivity applies to the soft condition only.

Cp specific heat

 $\boldsymbol{\alpha}$ thermal expansion coefficent

Fabrication Properties	
Cold Formability	excellent
Hot Formability	not recommended
Soldering ability	excellent
Oxyacetylene welding	fiar
Gas shield arc welding	good
Resistance welding	good
Machining	not recommended
Brazing	excellent

Electrical Conductivity

 $Electrical \ conductivity \ depends \ on \ chemical \ composition, level \ of \ cold \ deformation, and \ grain \ size. \ High \ levels \ of \ deformation \ and \ small \ grain \ size \ reduce \ conductivity.$

Typcial Uses

Automotive, electrical components, connectors, relays and conductor springs, clamps, springs, metal hoses, bushings, paper industry, textile industry, chemical industry, machinery parts, and shipbuilding.

Corrosion Resistance

Bronze is resistant to natural and industrial atmospheres, maritime air, potable and service water (if flow rate is not excessive), seawater, nonoxidizing acids, alkaline solutions, and neutral salt environments. It has low corrosion resistance to ammonia, halogenides, cyanides, hydrogen sulfide solutions and atmospheres, and oxidizing acids. Bronze alloys exhibit enhanced resistance to seawater and pitting corrosion.

Mechanical Properties							
	Tensile Strength [MPa]	Yield Strangth [MPa]	Elongation A50	Hardness HV [-]	Bend ratio 90° Twist ratio 18 [r] [r]		tio 180°]
5.10	ou.ogan [init u]		[, v]		GW	BW	GW

Other tempers are available upon request.

r = x * t (thickness $t \le 0.5$ mm)

 $\,$ GW bend axis transverse to rolling direction. BW bend axis parallel to rolling direction.

Dimensional Specifications	
Thickness (mm)	Width (mm)